AI (Trí Tuệ Nhân Tạo) Là Gì

Trước khi tìm hiểu AI (Arttificial Intelligence – Trí Tuệ Nhân Tạo) thì ta hãy tìm hiểu Trí thông minh là gì nhé!

Trí thông minh (Intelligence):

  • Là khả năng học hỏi và giải quyết vấn đề. Vậy thông minh được hiểu trên máy tính là sao, tức là “làm cho máy tính trở nên thông minh để chúng có thể hoạt động một cách thông minh”. Vậy thông minh tới mức nào? Làm sao để đánh giá trí thông minh đó?
  • Bằng cách nào đó, máy tính có thể giải quyết các vấn đề trong thế giới thực, bằng cách tự cải thiện những trải nghiệm trong quá khứ, chúng sẽ được gọi là “thông minh”.
  • Do đó, các hệ thống được gọi là thông minh sẽ có khả năng “suy nghĩa” và giải quyết vấn đề linh hoạt hơn.
  • Trí thông minh bao gồm:
    • Lý luận (Reasoning)
    • Học tập (Learning)
    • Giải quyết vấn đề (Problem Solving)
    • Nhận thức (Perception)
    • Trí tuệ ngôn ngữ (Linguistic Intelligence)

Trí tuệ nhân tạo (Artificial Intellifence):

  • Trí thông minh là khả năng tiếp thu và áp dụng kiến thức. Kiến thức là thông tin có được thông qua kinh nghiệm. Kinh nghiệm là kiến thức có được thông qua tiếp xúc đào tạo (training).
  • Có thể hiểu một cách đơn giản hơn như sau:

Trí tuệ nhân tạo là bản sao một cái gì đó giống con người có khả năng thu thập và áp dụng thông tin mà nó thu được thông qua việc tiếp xúc.

  • Nhiều công cụ được sử dụng trong Abao gồm các phiên bản như: tìm kiếm và tối ưu toán học, logic, các phương pháp dựa trên xác suất và kinh tế học. Lĩnh vực AI dựa trên khoa học máy tính, toán học, tâm lý học, ngôn ngữ học, triết học, khoa học thần kinh, tâm lý nhân tạo và nhiều lĩnh vực khác.

Khi nào cần Trí tuệ nhân tạo?

  • Khi cần tạo ra các hệ thống chuyên gia thể hiện hành vi thông minh với khả năng tìm hiểu, chứng minh, giải thích và tư vấn cho người dùng của nó.
  • Giúp máy móc tìm ra giải pháp cho các vấn đề phức tạp như con người làm và áp dụng chúng dưới dạng thuật toán theo cách gần gũi với máy tính.
  • Các ứng dụng của AI bao gồm: Xử lý ngôn ngữ tự nhiên, Trò chơi, Nhận dạng giọng nói, Hệ thống thị giác, Chăm sóc sức khoẻ, Ô tô,…
  • Một hệ thống AI bao gồm: tác nhân và môi trường của nó:
    • Tác nhân (ví dụ: con người hoặc robot) là bất cứ thứ gì có thể nhận thức được môi trường của nó thông qua các cảm biến và tác động lên môi trường đó thông qua các bộ tạo hiệu ứng. Tác nhân thông minh phải có khả năng thiết lập mục tiêu và đạt được chúng. Trong các bài toán lập kế hoạch cổ điển, tác nhân có thể cho rằng đó là hệ thống duy nhất hành động trên thế giới, cho phép tác nhân chắc chắn về hậu quả của các hành động của mình. Tuy nhiên, nếu tác nhân không phải là tác nhân duy nhất, thì đòi hỏi tác nhân phải có lý do không chắc chắn.
    • Chính vì vậy đòi hỏi một tác nhân không thể chỉ đánh giá môi trường và đưa ra dự đoán mà còn đánh giá các dự đoán và điều chỉnh dựa trên đánh giá của mình. Xử lý ngôn ngữ tự nhiên mang lại cho máy khả năng đọc và hiểu ngôn ngữ của con người.
    • Một số ứng dụng đơn giản của xử lý ngôn ngữ tự nhiên bao gồm truy xuất thông tin, khai thác văn bản, trả lời câu hỏi và dịch máy. Cảm nhận máy là khả năng sử dụng đầu vào từ các cảm biến (như máy ảnh, micrô, cảm biến, …) để suy luận các khía cạnh của thế giới. Ví dụ: Thị giác máy tính; các khái niệm như lý thuyết trò chơi, lý thuyết quyết định, đòi hỏi một tác nhân có thể phát hiện và mô hình hoá cảm xúc của con người.

Sự nhầm lẫn giữa Machine Learning (ML) và Trí Tuệ Nhân Tạo:

  • Khái niệm cơ bản ML là nghiên cứu về các thuật toán máy tính tự động cải thiện thông qua trải nghiệm. Phân tích toán học của các thuật toán ML và hiệu suất của chúng là một nhánh của khoa học máy tính lý thuyết được gọi là lý thuyết học tập tính toán.
  • Stuart Shapiro chia nghiên cứu AI thành ba tiếp cận, mà ông gọi là tâm lý học tính toán, triết học tính toán và khoa học máy tính.
    • Tâm lý học tính toán được sử dụng để tạo ra các chương trình máy tính bắt chước hành vi của con người.
    • Triết lý tính toán được sử dụng để phát triễn một bộ óc máy tính thích ứng và tự do.
    • Thực hiện khoa học máy tính phục vụ mục tiêu tạo ra máy tính có thể thực hiện các nhiệm vụ mà trước đây chỉ có con người mới có thể thực hiện được.

Các đóng góp của AI:

  • AI đã phát triễn một số lượng lớn các công cụ để giải quyết các vấn đề khó khăn nhất trong khoa học máy tính, như:
    • Tìm kiếm và tối ưu
    • Hợp lý
    • Các phương pháp xác suất để lập luận không chắc chắn
    • Bộ phân loại và phương pháp học thống kê
    • Mạng nơ-ron
    • Lý thuyết kiểm soát
    • Ngôn ngữ
  • Các ví dụ nổi bật về AI bao gồm các phương tiện tự hành (chẳng hạn như máy bay không người lái và ô tô tự lái), chẩn đoán y tế, sáng tạo nghệ thuật (chẳng hạn như thơ ca), chứng minh các định lý toán học, chơi trò chơi (chẳng hạn như tìm kiếm của Google), trợ lý ảo (như Siri), nhận dạng hình ảnh trong ảnh, lọc thư rác, dự đoán các quyết định tư pháp và các quảng cáo trực tuyến được nhắm mục tiêu. Các ứng dụng khác bao gồm Chăm sóc sức khoẻ, Ô tô, Tài chính, Trò chơi điện tử, …

(Bài viết có tham khảo nguồn từ: cafedev.vn)